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We present an exact generalization of the Foldy-Lax formula for the self-energy 
of a wave propagating in a disordered system of identical spherical scatterers. 
The Foldy-Lax formula yields an expression for the self-energy valid to first 
order in the density of scatterers. Our exact formula allows a systematic calcula- 
tion of corrections to this low-density approximation. The formula is based on 
a renormalized cluster expansion which was presented earlier. 
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1. I N T R O D U C T I O N  

The simplest approximation to the optical potential or self-energy of a 
wave propagating in a disordered system of spherical scatterers is given by 
the Foldy-Lax formula/v3) One obtains this formula by adding the 
forward scattering amplitudes from the individual scatterers, assumed dis- 
tributed randomly, and neglecting multiple scattering. The approximation 
is valid to first order in the density n of scatterers. Explicitly the Foldy-Lax 
formula for the wave-vector- and energy-dependent self-energy reads 

Z'(q, E )=  n(q IM(E)t q) (1.1) 

where M(E) is the one-body T-matrix of a single scatterer taken to be 
centered at the origin. Here we have employed the notation 

(qlA] q') = I exp( - iq.  r) A(r, r') exp(iq' �9 r') dr dr' (1.2) 
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Since we need the forward scattering amplitude, both wave vectors in (1.1) 
are equal. 

In this paper we present a generalization of the Foldy-Lax formula 
which in principle is exact and valid to arbitrary order in the density. Our 
formula is based on the renormalized cluster expansion which we have 
presented earlier. ~4) We assume that the disordered system of scatterers on 
average is spatially uniform in the thermodynamic limit. Exploiting this 
assumption and using Fourier transformation, we are led to the concise 
formula 

S(q, E ) = n ( q  IM(E)[I-nR(q, E) M(E)] -~ l  q) (1.3) 

where R(q, E) is a linear operator which we call the recurrence operator. 
Although this operator cannot be evaluated explicitly for a dense system of 
scatterers, it can be expressed exactly in terms of a cluster expansion. Thus, 
(1.3) is a useful starting point for the calculation of corrections to the 
Foldy Lax formula. 

In Section 5 we present a generalization of the self-energy which we 
have found useful in work in linear hydrodynamics, where similar concepts 
apply. For  this generalized self-energy we derive an expression analogous 
to (1.3). 

The general theory has numerous applications. ~5 7~ We have already 
studied the effective dielectric constant of nonpolar fluids and suspen- 
sions. (SJ Other applications of the theory will be published elsewhere. 

2. S U M M A R Y  OF BASIC E Q U A T I O N S  

We consider an m-component vector wave propagating in a dis- 
ordered static array of identical scatterers. The time-independent linear 
wave equation for a particular configuration of scatterers reads 

Yo0(1,..., N; r) - V(1 ..... N) 0(1 ..... N; r) = s(r) (2.1) 

where So is the wave operator for the uniform medium, and V(1,..., N) is 
the potential operator, which depends on the configuration of scatterers. 
We assume that the scattering potential consists of a sum of identical one- 
body terms 

N 

V(1 ..... N ) =  ~ V(j) (2.2) 
j = l  

The label j in V(j) indicates the parametric dependence on the position of 
the scattering center Rj and possibly orientational variables Oj. 
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We assume that the disorder of the system is described by a known 
probability distribution W(1 ..... N). Moreover, we assume that the system 
in volume f2 on average is spatially uniform and possesses a well-defined 
thermodynamic limit N ~ o% ~ --+ m with uniform density n(1 ) and trans- 
lationally invariant partial distribution functions n(1 ..... s). 

Let 

=f tPo(r) Go(r - r ' ) -  s(r') dr' (2.3) 

be the solution in the absence of scatterers, where G o ( r - r ' )  is the free- 
space Green function corresponding to outgoing waves. Defining the 
N-body T-matrix by 

V(1 ..... N) ~b(1,..., N ) =  T(1 ..... N) ~o (2.4) 

we obtain for the self-energy operator X of the average wave, defined by 

X= ( T)( I  + Go( T) ) -~ (2.5) 

where the average is over the probability distribution W(1 ..... N). 
Due to (2.2) the N-body T-matrix has the multiple scattering expan- 

sion 
N ~ y [  , 

T(I ..... X ) =  ~, M(j)+ M(Jl) 1-[ GoM(j,) (2.6) 
j = I  l = 2  [ j ]  t - -2  

where M(j) is the one-body T-matrix for scatterer j and the last sum is 
over all sequences [ j ]  of l labels with the condition, indicated by the 
prime, that no label be repeated in succession. We have shown in I on the 
basis of the multiple scattering expansion that the average T-matrix may be 
cast in the form 

(T )=fd ln (1 )B(1 )+fd ld2n(1 )n (2 )B(1 )H(1 ,2 )B(2 )  (2.7) 

where the bridge operator B(1) is given by 

B(1)=M(1)[I-S(1)M(1)]  * (2.8) 

with the reaction field operator S(1). The pair connector H(1,2) is 
expressed by an Ornstein-Zernike type equation 

H(1,2)=C(1,2)+fd3n(3)C(1,3)B(3)H(3,2)  (2.9) 
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in terms of the direct connector C(1, 2). The latter is related to the short- 
range connector S(1, 2) by 

C(1, 2) = Go + S(1, 2) (2.10) 

The reaction field operator S(1) and the short-range connector S(1, 2) are 
the basic constituents of the theory. Each of these operators may be decom- 
posed in terms of a cluster expansion 

S(1)= Ss(1), S(1, 2 )=  ~ Ss(1, 2) (2.11) 
s = 2  s = 2  

where S,(1) and Ss(1,2) are given as Integrals of s-body scattering 
operators over s-body correlation functions. The detailed expressions for 
these cluster operators have been given in I. As an example, we repeat here 
the expressions for the two-body terms $2(1) and $2(1,2). The two-body 
contribution Sz(1) is given by 

Sz(1) = f d2 n(2) g(1, 2) Nl1(1, 2) (2.12) 

where g(1, 2) is the pair distribution function and Nl~(1, 2) is a nodal con- 
nector which may be found from the solution of the two-body scattering 
problem. The connector NH(1,2) summarizes all scattering processes 
between the particles 1 and 2 for which the first and the last scatterer are 
1. Similarly, the two-body contribution $2(1,2) is given by 

S2(1, 2)= g(1, 2)[N~z(1, 2)-Go] + h(1, 2) Go (2.13) 

where N12(1 , 2) is a second nodal connector and h(1, 2) = g(1, 2) - 1 is the 
pair correlation function. The connector N12(1, 2) summarizes all scattering 
processes between the particles 1 and 2 for which the first scatterer is 2 and 
the last scatterer is 1. The higher order terms in (2.11) are defined in similar 
manner. As the order increases, the terms become more and more difficult 
to evaluate. In the present paper we are not concerned with the explicit 
calculation, but derive a general and exact result for the self-energy, valid 
for spherical particles. 

We have shown in I that the self-energy operator X, given by (2.5), 
may be expressed as 

X=fdln(1)B(1)+fdld2n(1)n(2)B(1)F(1,2)B(2) (2.14) 
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where the pair connector F(1, 2) is related to the short-range connector 
S(1, 2) by the Ornstein-Zernike type equation 

F(1, 2)= S(1, 2 ) + f  d3 n(3) S(1, 3)B(3)F(3, 2) (2.15) 

In principle, a calculation of the operators S(1) and S(1, 2) yields the self- 
energy operator X via (2.8), (2.14), and (2.15). 

3. S U S C E P T I B I L I T Y  O P E R A T O R  A N D  S E L F - E N E R G Y  

The relations given above are valid for a finite system of N scatterers 
enclosed in a finite volume s They remain valid when boundary condi- 
tions on the wavefunction are imposed at the walls of g2, provided the one- 
body T-matrix M and the Green function Go are changed accordingly. In 
practice one is usually interested in results valid in the thermodynamic 
limit. Averaging the wave equation (2.1), one obtains for the average wave 

& ( O >  - x ( ~ )  =s  (3.1) 

We expect that in the thermodynamic limit for a spatially uniform system 
the self-energy operator X becomes translationally invariant with a kernel 
X ~ ( r -  r') which depends only on the difference r -  r'. On the other hand, 
the solution of (3.1) 

(tp(r)) = f Gadr, r ' )-s(r ')  dr' (3.2) 

in general will not possess a thermodynamic limit independent of the shape 
of Q. Nonetheless, for fixed arguments r and r' the average Green function 
Gav(r, r') will tend to a limit G ~ ( r - r ' )  depending only on the difference 
r - r ' .  Formally, Ga~ is simply the inverse [~O--J~oc~] -1. In general this 
operator will have a long-range dependence on the distance r r - r ' [ .  

It is evident from (2.14) that the self-energy operator X may alter- 
natively be written in the form 

X =  ~ dl n(1) Z(1) (3.3) 

with the susceptibility operator Z(1) given by 

Z( 1 ) = B( 1 ) + f d2 n(2 ) B( 1 ) F( 1, 2 ) B(2) (3.4) 
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We may expect that the corresponding kernel Z(1; r, r') is of short range in 
the variables r - R  1 and r ' - R  1, so that the action of the operator X(1) is 
localized about the position R 1. On the other hand, if we write the average 
T-matrix in the same form 

( T )  = f dl n(1) r(1) (3.5) 

with, according to (2.7), 

r(1) = B(1) + f d2 n(2) B(1) H(1, 2) B(2) (3.6) 

then the kernel z(1;r, r') is of long range. Using the equations of the 
preceding section and the Dyson equation 

Ga, = Go + GoXG,v (3.7) 

one finds that the operators ~(1) and )~(1) are related by 

z(1) = X(1) + f d2 n(2) ~(1) G~vZ(2) (3.8) 

Therefore the long-range properties of the operator z(1) are directly related 
to those of the average Green function Ga,. 

The self-energy Zoo(q) is defined in the thermodynamic limit by 

lim (q IXl q ' ) = 8 ~ z 3 z ~ ( q ) 6 ( q - q  ') (3.9) 
N ~ o o  
Q ~ o o  

In (1.1) and (1.3) we have employed a more conventional notation for the 
self-energy. Note that in general z~(q) is a tensor of rank m. The delta 
function in (3.9) is an expression of the translational invariance of the 
system in the thermodynamic limit. 

4. R E C U R R E N C E  O P E R A T O R  

In order to simplify the discussion, we assume henceforth that the par- 
ticles are spherical. Thus, in order to specify a particular condiguration of 
scatterers, it suffices to specify the positions (1t 1 ..... RN) of the sphere 
centers. The integration symbol dj may be replaced by dRj. In the ther- 
modynamic limit the susceptibility operator Z(1), defined in (3.4), will be 
translationally invariant and the corresponding kernel will have the form 

lim Z(1) = x(r-- R1, r'--R1) (4.1) 
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From (3.3) and the definition (3.9) we find 

z~(q)= lira n(1)(q 17,(1)1 q)[R~=0 (4.2) 
N ~  

We evaluate the right-hand side by substituting (3.4). Here we use the fact 
that in the thermodynamic limit the pair connector F(1, 2) depends on its 
variables R1, R2, r, r' in the translationally invariant way 

lira F(1, 2) = F(R2 - RI;  r - RI, r ' -  R2) (4.3) 
Q ~ c o  

As in (4.1), we do not indicate the thermodynamic limit explicitly on the 
right-hand side. In the same limit the operators B(1) and B(2) in (3.4) have 
a dependence like (4.1). Employing variables of integration defined relative 
to the two centers, we find 

Zo:.(q)---n(q [B[ q )+n2(q  [Br(q)BI q) (4.4) 

where the operators B are centered at the origin and F(q) is the Fourier- 
transformed kernel 

F(q; s, s ' )=  f dR[exp(iq �9 R)]  F(R; s, s') (4.5) 

with R = R 2 - R I , s = r - R 1 ,  and s ' = r ' - R 2 .  Fourier transforming the 
integral equation (2.15) and taking the thermodynamic limit, we find 

F(q) --- SI21(q) + nSI2)(q) BF(q) (4.6) 

where the operator SI2)(q) is defined as in (4.5) from the kernel S(1, 2). The 
superscript serves as a reminder of the distinction between the operators 
S(1, 2) and S(1). Equation (4.6) has the formal solution 

F(q) = [ I -  nS~2)(q) B] -1 S~2/(q) (4.7) 

Substituting this in (4.4), we obtain 

) ~ ( q ) - - n ( q  IB(I-nS(2)(q) B) 11 q) (4.8) 

Finally, we find upon substitution of (2.8) 

X=o.(q) =n(q  pM(I -nR(q)M)  11 q) (4.9) 

with the operator R(q) given by 

nR(q) -: S (1) "~ nS(2~(q) (4.!01 
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where S ~  defined by 

S ~  lim S(1)]R~= o (4.11) 
N ~  ,~, 
s  

It may be worthwhile to write the important relation (4.10) more explicitly 
as a relation between integral kernels 

nR(q; s, s') = SI1)(s, s') + nS~2)(q; s, s') (4.12) 

where in the second term on the right the field variables s and s' have been 
defined following (4.5). 

The expression (4.9) is an important key to further calculations. It 
shows explicitly how the elementary constituent operators S r and S(2)(q) 
act in recurrent fashion. For this reason we call R(q) the recurrence  

operator .  

5. G E N E R A L I Z E D  S U S C E P T I B I L I T Y  

In work in linear hydrodynamics, where the same concepts apply, we 
have found it useful to extend the formalism and to introduce more general 
susceptibilities. We begin by noting that the self-energy may be regarded 
alternatively as a susceptibility. Introducing the Fourier transforms 

1 
( 0 ) q  = --~s"rc ~ J ~ ( 0 ) ( r )  exp( - iq" r) dr 

1 t" 
( V0 ) q  : --~ .r~-~ J | ( V0 ) (r) exp( - iq" r) dr (5.1) 

we find from the definition (3.9) in the thermodynamic limit 

~ g0)q  = z ~ ( q ) ( 0 )  q (5.2) 

We recall that )~(q)  may be found from (3.4) and (4.2). The response to 
the applied field 0o is given more directly by 

( V 0 ) =  ( T )  0o (5.3) 

but this relation is highly nonlocal. 
We generalize the susceptibility concept by introducing a modified 

T-operator via the multiple scattering expansion 
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TjK( 1 ..... N) 

N N 

= ~ MjK(J)+ ~ J(J) GoK(k) 
j = l  j = l  

k vsj 

/ = 2  EJ] i = 2  

,) (5.4) 

where Mjx, J, and K are three specified one-body operators and the last 
sum is over all sequences [ j ]  of l + 1 labels with the condition that no label 
be repeated in succession. When M j K  , J, and K are all identical with the 
Moperator ,  then Ts;c reduces to the T-matrix as given by (2.6). On the 
basis of the above multiple scattering expansion we may derive results 
analogous to those of Section 2. 

In particular, we find that (2.7) is generalized to 

( T j K > = f d l n ( 1 ) B s x ( 1 ) + I d l d 2 n ( 1 ) n ( 2 ) B j ( 1 ) H ( 1 , 2 ) B ~ ( 2 )  (5.5) 

with the first bridge operator defined by 

BjK(1) = MjK(1) + B j(1) S(1) X(1) -- MjK(1) + J ( 1 )  S(1) BK(1 ) (5.6) 

and the other two bridge operators defined by 

B j(1) = J ( 1 ) [ I -  S(1) M(1 ) ]  -1 

BK(1) = [-I-- M(1) S(1)] -1 K(1) 
(5.7) 

Corresponding to (5.5) we define 

XjK = f dl n( 1 ) Zjx(1 ) (5.8) 

with the susceptibility operator 

;O~(1) = Bj~:(1) + ol d2 n(2) B j(1) F(1, 2) Bx(2 ) (5.9) 

In analogy to (3.9) and (4.2), we obtain in the thermodynamic limit 

lim (q IXjKI q ' ) -  3 - 8To Zs~(q) 6(q - q ' )  (5.10) 

822/'55/5-6-20 
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with the generalized susceptibility 

ZfK(q) = lim n(1)(q ]ZO,K(1 )l q)IR~ =0 (5.1 1 
N ~ o ' 3  
g 2 ~ o o  

As the generalization of (4.4) we find 

) ZJK(q = n(q IBO,KI q) + nZ(q [Bo,F(q) BKI q) (5.12) 

where the operators BO,K, B j ,  and Bx are centered at the origin. By use of 
some operator algebra and the relations (4.7), (4.10), (5.6), and (5.7) this 
may be cast in the form 

Zo,x(q) = n(q [MjK[ q) + nZ(q [JR(q)[I-- nMR(q)] ~ K[ q) (5.13) 

It is easily checked that this reduces to (4.9) when MO,K, J, and K all 
equal M. 

We note that in analogy to (3.5) we may write 

( To, K) = f dl n(1 ) zo,x(1 ) (5.14) 

with the operator 

ro,K(1)=Bj~(1)+fd2n(2)Bj(1)H(1,2)Bx(2 ) (5.15) 

By the same derivation which leads to (3.8), it follows that 

rSK(1) = ZJK(1) + f d2 n(2) ZjM(1 ) GavZMK(2) (5.16) 

where ZjM(1) and XMK(1) are defined by (5.9) with M j M  = J and MMK = K. 
This shows that the response kernel "CjK(1 ) has long-range properties 
caused by the presence of the average Green function Gav. In addition, 
(5.16) provides an efficient way of calculating the response operator rgK(1). 
The susceptibility operators appearing in (5.16) have short-range kernels 
which may be evaluated in the thermodynamic limit from (5.13). In a 
separate paper we shall demonstrate the use of (5.16) in a calculation of the 
collective diffusivity of a system of Brownian particles with hydrodynamic 
interactions. 

6. D I S C U S S I O N  

We have derived an exact generalization of the Foldy-Lax formula for 
the self-energy of a wave propagating in a disordered system of identical 
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spherical scatterers. Our exact formula is given in Eq. (4.9). The recurrence 
operator R(q) appearing in this equation may in principle be calculated 
from a cluster expansion. In a preceding paper 14~ we have presented a 
detailed derivation of the cluster expansion. It is also easy to formulate 
several familiar approximation schemes within the present framework. For 
example, the ring approximation of Foldy and Walecka ~ amounts to 
approximating the recurrence operator by 

nR(q) ~ Gn - Go (6.1) 

independent of q, where G, is the renormalized Green function found from 
the approximate Dyson equation 

Gn = Go + GonMGn (6.2) 

with the integrated one-body T-matrix 

34= f dR 1 M(1) (6.3) 

Another well-known approximation is the quasicrystalline approximation 
of Lax. C2'3) In this approximation the recurrence operator is approximated 
by 

R(q; s, s') ~ f h(R) Go(s - s ' -  R) exp(iq. R) dR (6.4) 

where h(R) is the pair correlation function. It is clear that both approxima- 
tions (6.1) and (6.4) are rather crude and that a more sophisticated 
approach is needed. Self-consistent schemes, such as the coherent potential 
approximation,(~~ are not easily explained within the present framework. 
To that purpose it is necessary to first formulate the exact theory in a self- 
consistent fashion. 

In Section 5 we have extended the theory in a manner which we have 
found useful in problems in linear hydrodynamics, such as the sedimenta- 
tion of spheres in a quiescent fluid and the effective viscosity of suspensions 
of spheres. These applications of the general theory, as well as a com- 
parison with results from various approximation schemes, will be presented 
elsewhere.~2, ~3) 
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